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For the very small diameter filaments considered, the 

radiation Nusselt number is a negligible correction to the 

convection Nusselt number, as shown in Fig. 1. 

Apparently then, for materials that have very high thermal 

diffusivities as compared with that of the cooling medium, 

the assumption of isothermal cooling as described by 

Bourne and Elliston [1] is satisfactory for the prediction 

of heat transfer from continuous surfaces. However, ail 

necessary energy losses, such as radiation, must be included 

in the calculations, for, as is demonstrated in this paper, 

these corrections can be quite significant. 
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NOMENCLATURE 

boiling heat transfer coefficient : 
thermal conductivity : 
length : 
air moles : 
pressure : 
Avogadro constant: 

radial coordinate: 

radius: 

temperature: 

temperature of cooling water inlet: 

* This work was supported by the Consiglio Nazionale 

delle Ricerche-Istituto Ricerche sulle Acque under contract 

number 103 Rep. IRSA. 

T Bw. temperature of water boiling outside the 

evaporator: 

T PE. temperature of outer wall of the evaporator: 

TP. temperature of the inner wall of the evaporator: 

V, volume: 

W. power supply [W] : 
Wdi,,, power dissipated in the copper electrode: 

2. axial coordinate. 

Greek letters 

c(, temperature coefficient of thermal conductivity. 

Subscripts 

1, radius of the copper electrode : 
2, inner radius of the evaporator: 

3. outer radius of the evaporator: 
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B, 
C 
I. 
II. 

volume occupied by air in the measurement burette : 
volume occupied by air in the evaporator: 
section I, 
section II. 

Superscripts 
CO! standard condition : 
1, measurement condition. 

A TECHNIQUE is presented herebelow to measure heat 
transfer coefticients in pool boiling on vertical cylindrical 
evaporators. The temperature of the outer wall, on which 
boiling takes place, is measured by means of a gas volumetric 
method. The experimental equipment is sketched in Fig 1: 
evaporator A, completely immersed in water, consists of a 
304 SS tube 50 cm long (20 mm id., 21 mm o.d.), welded to 
flange F, while its closed plane top is brazed to a copper 
electrode E. Low voltage a.c. power (max 10 kW) is applied 
between the flange and the copper electrode, so that heat is 
generated through the Joule effect. 

The electrical resistance of the circuit is such that heat 
generation is mostly concentrated in the thin walls of the 
evaporator itself. On the other hand while the evaporator is 
cooled by external boiling water, the inner copper electrode 
is not able to dissipate the heat generated by electric current 
flowing inside, without reaching an excessive temperature. 
Therefore it is cooled by water in forced convection along 
a certain part of its length: water enters in the inner duct I, 
flows upward, inverts flow direction at the top and comes 
out at C. Section II of the electrode is made of solid copper. 
The annular space S between the copper electrode and the 
inner surface of the evaporator wall is sealed up airtight, 
except for a connection to a Schiff semimicro-azotometer 
by means of a metal capillary tube (0.6 mm i.d.), as shown in 
Fig. 1. 

MEASUREMENT METHOD 

The changes in volume of the air trapped inside the cavity 
S in a reference condition are measured for an indirect 
determination of the outer wall temperature of the evapora- 
tor when heated by the power supply. The changes in volume 
are evaluated by reading the variations of the liquid level in 
the azotometer after having again established the atmos- 
pheric pressure. This method was preferred to that of the 
use of thermocouples for two main reasons : 

(a) it is very difficult to locate thermocouples in the narrow 
space available in this particular arrangement. Moreover, 
the internal copper electrode being cooled, thermocouples 
are influenced by its tem~rature and no efficient thermal 
screening is feasible : 

(b) measurement of the wall temperature by a gas volu- 
metric method already provides average values, while to 

A- 

Sect. I 

I *Water inlet 
A- Evaporator 
B = BUr8tt8 
c - Wter OUti8t 
E- Coppet 8l8CtrOd8 
F = Flange 

q =Radius of the copper electrode 
R,=Inner radius of the evaporator 
R3- Outer radius of the evaporator 

FIG. 1. 

obtain the same results with thermocouples it would be 
necessary to use a lot of them. 

PHYSICAL A~UM~ONS 

A reference condition for the gas thermometer is defined 
as follows: (a) no power is supplied: (b) the temperature of 
the cooling water along the first part of the inner electrode 
(length I) is constant, while in section II the temperature 
distribution is dominated by thermal conductivity. A 
measurement condition is detined as follows: (a) power is 
supplied: (b) an increase (function of the length) of the 
temperature of the external surface of the electrode takes 
place, because of power generation inside copper; (c) the 
cylindrical walls of the evaporator are superheated in com- 
parison to that of boiling water (both for the temperature 
drop required to transfer heat from the outer wall to the 
boiling liquid and for the temperature drop across the thin 
metal wall). 

As a general rule, the reference temperature of the water 
which is external to the evaporator was selected equal to 
the boiling water temperature in measurement conditions. 
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MATHEMATICAL PROCEDURE 

The number of moles of air trapped in the cavity S, in the 

capillary tube and in the a7otometer is constant. both in 

reference and in measurement conditions, that is 

N’O’f N@‘: N,l + N,llL 
B c (1) 

Assuming that the air has the properties of a perfect gas, we 

have 

(2) 

The pressure is kept constant in all the system I’, + C’c 

and the temperature field in the azotometer is also constant 

and equal to the room temperature 7,. The extremely small 

volume of the capillary tube is negligible. From equations 
(I) and (2) we find 

L’H’r) - 1 ” _~_ -E-+L pg p$ (3) 
7x 

“< c <. 

By reading AI& one gets to know the right side of the 

equation (2). Due to the cylindrical symmetry of the system. 
dI’ = 2lrrdrd; while 7’ = T(r. 2) is the temperature of air 

trapped inside the cavity, function of radial and axial loca- 

tion. The size of the cavity S being so small, natural convec- 

tion caused by internal temperature differences is not 

permitted (the critical Grashof number is much above 

actual values). Moreover axial conduction along the 

evaporator and the water cooled section of the copper 

electrode has negligible effects on distorsion of the thermal 

field. As a general rule one can therefore express the integrals 

in (2) as : 

(4) 

I il ri, 
The radial distribution of temperature in S is calculated by 

means of the conduction equations 

divKgradT-0 K yK,(l +x7’). (5) 

In reference conditions the boundary conditions are the 

following: 

for i- = R, 7” ) = iyw (6a) 
in Section I 

r 1 Rz T’ ’ = r,, 

in Section II 

Since all the quantities in (5) are known, the first integral ol 
the right side of (2) can be calculated. In measurement condi- 

for r_=K I T ‘I) = 7,, + (aI -t n,z t tr,i’) W 17a) 

r = R, T”’ _ y 
P in Section I 

for r = R, T”’ z 7,, + (u4 + OX [7’P - 7,.,]z 

+ ~16) @’ (7b) 

r = R, T”’ = 7 
P 

in Section 11. 

In the boundary conditions, a,, a,. a3, , are numerical 

constants which depend on the values of the power dissipated 

in the inner electrode, and on the rise in temperature of 

the cooling water. In section I these quantities depend on 

the overall heat transfer coefficient of the inner heat ex- 

changer and on the temperature rise by Joule effect of the 

wall of the inner heat exchanger. 

In section II the temperature of the surface at radius r-r 
depends on the heat generated by Joule effect and on the 

water temperature in the heat exchanger. 

Moreover all other quantities in (6) are known, except 

Tp. Therefore. equation (2) can be solved analytically or 

numerically, for TP. The temperature TP (which is equal to 

the temperature TpE in test reference conditions) is related 

to Ta, when power is supplied. by 

TPE = TB _ u,R, j _ _~~ R:_ I,, !? 
R: - R: R, ! (8) 

where ‘I, is yet another constant, which depends on the 

geometry and physical characteristics of the evaporator, 

and of the power dissipated in the external wall of the 

evaporator. 

06 

IO 20 
K w/cm2 

tions, one has: FIG. 2. 
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In fact, the mathematical model, due to its complexity, 

was solved by a UNIVAC 1180 computer. Some results are 

presented in Fig. 2. 

CONCLUSIONS 

In our experimental apparatus, the overall sensitivity 

is 0.75 cm3i”K at boiling water temperature of 100°C (the 

displacement corresponding to 1 cm3 is 1.8 cm), while the 

intrinsic inaccuracy, shown by small oscillations of the 

liquid level of the azotometer, is in the order of 0.05 cm3. 

Thus the procedure seems perfectly adequate for an accurate 

measurement of the heat transfer coefficient in pool boiling, 

given by : 

even if (TPE - Ta,) is a few degrees. On the contrary the 

intrinsic uncertainty is caused by the irreproducibility of the 

boiling phenomenon itself. 
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R 

CP 
DC, 
E, 
EC, 
H*, 

NOMENCLATURE 

magnetic flux density; 

heat capacity; 

equivalent diameter [4a/(l + l/y)]; 

electric field ; 
Eckert number [t?/C,(T, - T.)]; 

dimensionless magnetic held, 

Subscripts 

c, centerpoint of duct; 

w, wall. 

Superscripts 

, “pseudo” parameter delined on basis of a velocity 

other than the average velocity; 

-, average value; 
* , dimensionless variable. 

J, 
k, 
M, 
NE, 
Nu, 
p, 
4, 

u*, 
Y*, 

z*, 

current density; 

thermal conductivity; 

Hartmann number [aB,,(u,/MJt] ; 
electric field parameter [E,/cB,]; 
Nusselt number [q,D,/k(T - T,)]: 
pressure; 

heat llux; 

dimensionless velocity, [p,u/a*( - aP/ax)] ; 

Ylz ; 
Z/b. 

1. INTRODUCTION 

Greek 

Y3 
0, 

P> 

P. 

symbols 
aspect ratio of duct (b/a); 
dimensionless temperature, T - TJT, - 7,; 

viscosity; 

density; 

THERE have been many analyses of MHD heat transfer in 
parallel plate geometries [l-5] but studies in finite ducts 

have been relatively scarce. Despite the abundant work on 

the simpler parallel plate problems, there has been sur- 

prisingly little emphasis placed on predictions of the 

Nusselt number. Finite ducts have not received as much 

attention due in part to the complexity of the problem since 

the fluid flow is influenced by the nature of recirculating 

currents which must be accounted for by relating the local 

current density to the magnetic field which is induced in 
the direction of the flow. This is particularly important 

when the duct walls are electrical insulators and it then 

becomes necessary to solve two coupled partial differential 

equations: the momentum equation and the equation 

0, electrical conductivity. describing the distribution of the induced magnetic field. 


